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Abstract The structures of  titanium sulfides 

The layer units appropriate to the analysis of titanium 
sulfide with stacking faults are considered. The layer 
units composed of one sulfur layer and one titanium 
layer are adopted for the structures whose stacking 
sequences are relatively simple. The layer units com- 
posed of two sulfur layers, one fully occupied titanium 
layer, half of a partly occupied titanium layer and half 
of another partly occupied titanium layer are adopted 
in the case of the more complex stacking sequences. 
The general method for obtaining the diffraction 
intensity distribution by matrices is modified so as to 
be suitable for the analysis based on these layer units, 
and examples of the calculated intensity curves are 
illustrated. 

Introduction 

It is often observed that selective broadening and 
weakening occurs for reflexions with h - k :/= 3n (hkl; 
indices on the hexagonal cell of the close-packing layers 
of sulfur) in the X-ray diffraction pattern of non- 
stoichiometric titanium sulfide. This broadening and 
weakening suggests the occurrence of stacking faults. 
For the analysis of structures with stacking faults, the 
theoretical intensity distribution formulas were derived 
by Wilson (1942), Hendricks & Teller (1942), Jagod- 
zinski (1949a,b), Paterson (1952), Kakinoki & 
Komura (1952, 1954a,b, 1965) and Kakinoki (1965, 
1966, 1967). The scattering powers are not the same 
for all the layers in the case of nonstoichiometric 
titanium sulfide, so the derivation of the expression 
available for this system is required. 

In this paper we consider the layer units appropriate 
to the titanium-sulfur system and propose a modified 
procedure to calculate the intensity distribution by 
using the matrix method given by Kakinoki & Komura. 
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In the range TiS-TiS2, several phases such as TiS, 
TisS 9, Ti4S 5, TiaS 4, TiES 3, TisS 8 and TiS 2 have been 
found (Jeannin, 1962; Wiegers & Jellinek, 1970; Tronc 
& Huber, 1973). The structures of these phases are all 
based on close-packing layers of sulfur; hexagonal 
close packing for TiS or TiS 2, and more complex 
stacking sequences of h-packed sulfur layers and c- 
packed sulfur layers for the intermediate phases. 
Titanium atoms always occupy octahedral holes in the 
close-packing structure of sulfur. These sites are fully 
and partly occupied in the alternating titanium layers in 
the composition range TiS1. 4 to TiS 2, which corres- 
ponds to the existence range of the phases Ti2S3, TisS 8 
and TiS 2. We will discuss such a range, then three kinds 
of layers are considered; that is sulfur layers, fully 
occupied titanium layers and partly occupied titanium 
layers. They are represented by S, Ti and Ti', 
respectively. The common feature of stacking is 
represented by ... S Ti S Ti' S Ti S Ti' S. . .  as shown in 
Fig. 1. We assume that this common feature of 
stacking is maintained throughout the faulted structure 
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Fig. 1. Schematic drawing of the common stacking features in the 
range TiS1.4 to TiS2. 
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of the composition range TiS1. 4 to TiS2. In the present 
work the distances between the adjacent layers are 
taken as equal because the diffracton intensities 
observed for faultless Ti2S 3 agree with those calculated 
by assuming equal interlayer distances. 

Layer unit composed of one sulfur layer and one 
titanium layer 

The general intensity equation for X-ray diffraction by 
a one-dimensionally disordered crystal was derived by 
Hendricks & Teller (1942) and rearranged by Kakinoki 
& Komura (1952, 1954a,b, 1965) as 

N - - I  

I = N spur VF + ~ ( N -  m) spur VFP m 
m=l 

x exp (--i2rcmO + conjugate. (1) 

The notation is the same as used in the works of 
Kakinoki & Komura. We consider first the model in 
which random substitution of the cubic-packing sulfur 
layer is introduced into the hexagonal close-packing 
structure such as a nonstoichiometric TiS 2 phase. If we 
adopt each of the sulfur layer, fully occupied titanium 
layer or partly occupied titanium layer as a layer unit, 
there are nine kinds of layer and the layer form factors 
are 

vA = Vs, v~= Vs e*, Vc= Vs e; 

Va= VTi, V b = V.ri e*, Vc= V ri e; (2) 
va, = VT,,, Vb, = VT~, e*, Vc, = VT,, e; 

where the letters such as A, B and C denote the three 
possible positions of the close-packed layers, and e = 
exp[i2~z(h - k)/3] and e* = e 2. Titanium atoms are 
assumed to occupy the octahedral sites regardless of 
stacking faults. For example, the titanium sites sand- 
wiched between the sulfur layers, C and A, are 
necessarily b or b'. As the titanium sites are occupied 
fully and partly in the alternating titanium layers, 
possible sequences which lead to the position A, a or a '  
are given in Fig. 2. In this case the order of the con- 

A-c'.. 
b,'~ C-b , C_a,/B" 

A a 
c'.. B_c/  B-a'- .C/  
a,/ A_b,/ 
a...C_b, A - c . .  
b / -  - \ A  C-a /Bxa" 

C~B_c, / B-a . .c  / 
a / A -b  / 

Fig. 2. Sequences which lead to a position A, a or a '  for a faulted 
TiS 2 structure. Analogous figures can be drawn for a position B, 
b or b' and a position C, c or c'. 

tinuing probability matrix is so large that the cal- 
culation needs much effort. In order to reduce the order 
of the matrix we adopt four kinds of layer unit (1A, 2A, 
3A and 4A) composed of one sulfur layer and one 
titanium layer which is fully or partly occupied, as 
illustrated in Fig. 3. Then there are twelve kinds of 
layers as follows: 

VIA= V 1, VIs= Vle*, Vlc= V l e; 

v2A = v2, v,B= v2 e*, V2c= V~ e; 

v3A= v3, v3B= v~e*, V~c= V~e; 

v,~ = v,, v,~= v, e*, V,c= V, e. 

(3) 

1A, composed of Ti and S, must be followed by 2C or 
4C, composed of Ti' and S, according to the common 
feature of the stacking. Then the continuing prob- 
abilities for the faulted TiS2 structure are given by the 
matrix P as shown in Table 1. 
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Fig. 3. Imaginary stacking model for UlustratLng layer units 
composed of one sulfur layer and one titanium layer. O sulfur 
site; • fully occupied titanium site; ~ partly occupied titanium 
site. 

Table 1. P table for the model of  the faulted TiS 2 
structure (see text) 
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We express the layer form factors for Vt, V2, V3 and 
V 4 as 

V, = LVE(¢,r/)[fs + fTi e* exp (inO]; 

V2= LV2(~, r/)[fs + YfTi e* exp (i7c0]; (4) 
V3 = LVZ(~,rl)[fs + fTi e exp (izc0]; 

V4 = LV2(~,r/)[fs + YfTl e exp (izr0]; 

where L(~, r/) is the Laue function involving a* and b*, 
fs  and fTi are the atomic scattering factors for the S and 
Ti ions, respectively, y is the occupany factor of the 
partly occupied titanium layer and the composition is 
represented by Til+rS 2. ~ is the coordinate along e*, 
where c* is equal to the reciprocal of the thickness of a 
layer unit. 

The matrix P can be rewritten as (0 Pl ) 
P l = P2 0 (5)  

P l  P2 

and the matrix F of existence probabilities of the layer 
is 

fl00  w20 
F = 0 W , with W = . 

0 0 0 . w d 

(6) 

where the orders of the matrices Pt, P2 and W are all l, 
(=4  in the present case), one third of the order of P, 
and Y~=I wi = 1. Then the general method of solution 
proposed by Kakinoki (1967) can be applied to our 
case. But as the scattering powers are not the same for 
all the layer units, minor modification is necessary. The 
modified procedure is as follows: 

Step 1. Equation (1) is rewritten as 

N-I  
I = ~ ( N - - I m l ) J  m exp (-i2zemO, (7) 

m=-[N-ll 
Jm = s p u r  V F P  m 

and PI and P2 are set from the correct P. 
Step 2. By solving the equation 

H ( P I + P 2 ) = I t  w i t h H =  , (8) 

1 W2 W/// 

the existence probability, wi, is expressed in terms of 
elements of the matrix P. 

Step 3. J0, J~, J2,  " '" and Jz-~ are calculated by the 
equation 

Jm = spur vW (eP 1 + e* P2) m, (9) 

where 

and v = 

tv v V = ~v v C* 

* V EV 

v* v, v'v2 ... v* V,vt v*: v~ v*: v2 ... v~. vt 

\ v 7  Vl ... 

Step 4. a o, a l, a 2 . . . .  and a t are obtained from the 
characteristic equation F(x) ,  

F ( x )  = det (xl - eP1 - e* P2) 

1 
= • a, x t - n = O ,  (10) 

n=O 

where I is a unit matrix of order I. 
Step 5. Jm and a n are substituted into the formula 

for the diffuse intensity term: 

D(O = I/[ L((j, rl)N] 

+ conj _ Jo/L(~,rl)" (11) 

The principles of the steps are comprehensible in a 
similar manner to that described by Kakinoki & 
Komura (1965) and Kakinoki (1966, 1967). Following 
these procedures the diffuse intensity curve of the 
model of a P table shown in Table 1 was calculated. We 
obtained 

Pl / 1 t 
a 1 - - a  

P2 = 

and wl = w2 = w3 = w4 = 0.25. Jm and a n were 
calculated and substituted into (11) using a computer 
(FACOM 230-35). The atomic scattering factors, fs  
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and fTi, which are contained in the expression of the 
layer form factor, equation (4), were approximated by 
the quadratic function of ~ by assuming the cell 
constants of TiES 3 and the wavelength of Cu Ka.  The 
intensity curves along the 10.~ reciprocal-lattice line 
calculated for a fault probability a varying from 0.1 to 
0.9 stepwise are illustrated in Fig. 4 for y = 0.33. 

The layer form factors of VI,  V2, . . .  and V 8 are given 
by 

V 1 = L m ( ~ , r l ) { ( y f T ] 2 ) [ 1  + exp (--i2z~01 

+ fs e exp (--iz~(./2) + fTi exp (-- in0 

+ fs  e* exp(--i3zrCJ2)} 

V 2 = L l/2(~,tl){(YfTi/2)[,f.* + exp (--i2z~O] 

Layer unit composed of two sulfur layers, one fully 
occupied titanium layer, half of a partly occupied 
titanium layer and half of another partly occupied 

titanium layer 

Next we consider the structure which has a larger 
stacking period such as TisS 8, which was called 12R by 
Tronc & Huber (1973) by analogy with the polytype of 
CdI 2. It is convenient to adopt layer units which are 
easily related to the customary expression of the 
stacking sequence such as hhcchhcc  .... We imagine 
that a partly occupied titanium layer has been cut in 
two perpendicularly to the c axis, and then we try to 
adopt layer units composed of two sulfur layers, one 
fully occupied titanium layer, half of a partly occupied 
titanium layer and half of another partly occupied 
titanium layer, as illustrated in Fig. 5. There are 24 
kinds of layers: 1A, 1B, 1C, 2A, 2B, 2C . . . .  , 8 A ,  8B 
and 8C. The layer form factors are expressed by 

+ fs  exp (--i:,tQ'2) + f~i e exp (--iTtO 

+ fs  e* exp (--i37t~2)} 

V 3 = L m({, r/){ (yfn/2)[ e + exp (-iZzcO] 

+ fs  exp (-iztg_.J2) + fri  e exp (--i:,r{) 

+ fs  ~* exp (--i3zc(J2)} 

V 4 = L' /Z({ ,r l ){(y fr i /Z)[e* + exp (-iZzcO] 

+ fs  g exp (--izrg_.J2) + fa-i exp (-iztO 

+ fs g* exp(-i3zt{/2)} 

V 5 = L ~/2({,rl){(yf.ri/Z)[e + exp (--i27~{)] 

+ fs  e* exp (--i?t(,/2) + fri exp (--i~rO 

+ fs  e exp (--i3zcgJ2)} 

V 6 = L v2 ( ~, r/){ (Yfvi/2)[ e* + exp (--i27r{)] 

+ fs exp (--izt(.J2) + fri e* exp (--izcO 

+ fs e exp(--i3n{/2)} 

(13) 

V ~ =  V~, V I s =  V~ e*, V l c =  V~ e; 

v~A= v~, v~,,=v~e*, v~= v~; 

Vs~= V,, v~,,= v~*, V~c= V~e. 

(12) 

V 7 = L '/2(~,rl){(yf.ri/2)[e + exp (--i2zt~)] 

+ fs exp (--iztQ'2) + fri  e* exp (--i~zO 

+ fs  e exp (--i3zc~/2)} 

V 8 = L'/Z(~,r/){(Yfri/2)[ 1 + exp (--iZzcO] 

+ fs  e* exp (--izc(../2)+ fTi exp(--izcQ 

+ fs  e exp(--i3zc~/2)}. 
y= 0.33 ABCABCABCA ABCABCABCA 

~,A ~ / l o  ±o c 
1 %  ?.,.?o 

0.0 0.1 0.2 0.3 0A. 0.5 0.6 "-~ ~ ~ ~ 1.1 IOI  O I (31 
Fig. 5. Imaginary stacking model for illustrating layer 

Fig. 4. Intensity curves along the 10. ff line calculated for the model 
of Table 1. 

mits contain- 
ing two sulfur layers. O sulfur site; • fully occupied titanium 
site; O partly occupied titanium site. 
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The constitutions of the layer units, 1A, 2A, 3A, ... and 
8A, are respectively represented by a+(h - h)a +, b+(c 
+ c)a +, c-(h + c)a +, b-(c - h)a +, c+(c + h)a-, 
b+(h - c)a-, c-(c - c)a- and a-(h + h)a-. h and 
c represent the packing character of a sulfur layer, that 
is a layer is denoted by h if the two neighboring sulfur 
layers are in the same position (e.g. both A) or by c if 
they are in different positions (e.g. A and C). Sand- 
wiched + or - represents the fully occupied titanium 
layer situated between the positive or negative pair of 
sulfur layers, where the terms positive and negative are 
used as in Patterson & Kasper (1967). a ÷, b ÷ and c ÷ 
represent the site of half of the partly occupied titanium 
layer inserted between the positive pair of the sulfur 
layers, and a- ,  b- and c- represent that inserted 
between the negative pair. The representations for nB 
and nC result from those for nA (n = 1, 2 , . . . ,  7, 8) with 
the cyclic permutation a --, b -+ c, b --, c --, a and c -+ a 
~ b .  

As an example, a P table based on a model, in which, 
for example, 1A is followed only by 2C or 5B, is shown 
in Table 2. In common with the P table based on the 
layer units described above, the values of the elements 
except those enclosed with thin lines in Table 2 are all 
zero because, for example, a ÷ must be followed by a ÷ 
in order to compose a complete layer. P is no longer 
rewritten in the form of (5) but as 

P ~--- P2 Po Pl  • (14) 

1 P2 P 

Then the general method of solution should be further 
modified. The following equations should be substituted 
for (8), (9) and (10), respectively: 

H(Po + P, + P2)= H; (15) 

Jm= spur vW(P o+ eP1 + e* P m. 2) , (16) 

F ( x )  = d e t ( x l -  P 0 -  ePl - e* P2) 
l 

= ~ a n X t - " = O .  (17) 
n=0 

In the case of Table 2, the matrices (Po + P1 + P2) 
and (Po + ePl + e* Pz) are set as shown in Table 3 from 
the P table. The existence probabilities are obtained as 

w, = w 2 = w 7 = w s = (1 -- a)/4, 

W a = W 4 = W 5 = W 6 ~ - - a / 4 ,  

(18) 

by solving (15). We calculated the diffuse intensity 
curves as shown in Fig. 6 according to the modified 
general method of solution by using (13). When the 

Table 3. (a) (P0 + Pl + P2) table and (b) (P0 + eP, + 
e* P2) table set f rom the P table shown in Table 2 

(a) i 2 3 4 5 6 7 8 

l-a a 

l-a a 

l-a a 

l-a a 

a l-a 

a l-a 

a l-a 

e l-e 

(b) 
1 2 3 4 5 6 7 8 

e* (l-a) ee 

l-(x £*(x 

1-a 6*ct 

g *  (l-a) £a 

E*ct c (l-a) 

~a l-a 

ea i-~ 

6"c= ~ (l-a) 

Y = 0 . 2 5  

(Ti , . o .asSa )  

Table 2. P table based on the layer units illustrated in 
Fig. 5 

IA 2 .A3A4ASAd~  7ASA 1g 2B384B  58 68 7B 881C 2C3C4C5C6C 7C8C 

< <~..o. ~, 

b*(h-cla o 6A -od 1 
c ' t c -c )a"  7A 

- . . . . . . . .  T - J - - L  . . . . . . . . . .  . . . . . . .  71- . . . .  
c'( o c i b '  2B a : h-~ I 
a ' (h*c)b t 3B el ~- : 
c-(c.l.gb + 

c" i h-clb" 6B I - ~  ~t 
a ' (  c-c)b" 7B , - ~  e 
b'( h*h)b" 

o.<o.<,<. ~ i ~ i,.;[ 
b ' ( h< l c *  3C I ',1".~ 
a ' (c-h)c* 4 C /  LgLI  ' ~ . 1 1 :.._. . . . .  
bI( oh)c"  5C i gt f 

b ' (c -c ic "  -(~ 
c'( h.h)c" _ _  

0==0.9 

0 . 8 - -  

o~ i - _ -  7 
0.4  - ~ - -  

0.1 ~ 
0.0  0 .2  0 .4  0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2 .2  

Fig. 6. Intensity curves along the 10. ~ line calculated for the model 
of Table 2. 
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value of a is close to zero, the stacking sequences are 
such as a+(h - h)a+(c + c)c+(h - h)c+(c + c)b+(h - 
h)b+(c + c)a ÷ ..., in a concise representation 
hhcchhcc..., that is the TisS 8 structure. When the value 
of a is close to unity, the stacking sequences are such as 
a+(c + h)b-(c - h)a+(c + h)b-(c - h)a + ..., in a con- 
cise representation chch..., that is the Ti2S 3 structure. 
For the intermediate value of a, the intensity dis- 
tribution of the faulted TisS s structure where the (c + c) 
layer is replaced by the (c + h) layer at the probability 
of a and so forth is displayed among the reciprocal- 
lattice line 10. ( in Fig. 6. The value of ( is twice as 
large as that shown in Fig. 4, because c* is taken as 
equal to the reciprocal of the thickness of a layer unit. 

The contents of the P table based on the 
layer units described above are easily related 
to the stacking sequences which are usually expressed 
by c and h. If y in Til+rS 2 approaches zero, the 
partly occupied titanium layer corresponds to the 
van der Waals' gap between sulfur-titanium-sulfur 
sandwiches. In addition, these layer units can be 
effectively applied to depict the polytype-like 
phenomena observed by Tronc & Huber (1973). Then 
the layer units shown in Fig. 5 are convenient for con- 
sidering the stacking problem in the titanium-sulfur 
system. 

References 
HENDRXCKS, S. & TELLER, E. (1942). J. Chem. Phys. 10, 

147-167. 
JAGODZINSKI, H. (1949a). Acta Cryst. 2, 201-207. 
JAGODZINSKI, H. (1949b). A cta Cryst. 2, 208-214. 
JEANNIt~, Y. (1962). Ann. Chim. (Paris), 7, 57-83. 
KAKrNOKI, J. (1965). Nippon Kessho Gakkaishi (in 

Japanese), 7, 66-97. 
KAKrNOKI, J. (1966). Nippon Kessho Gakkaishi (in 

Japanese), 8, 15-33. 
KAKINOKI, J. (1967). Acta Cryst. 23, 875-885. 
KAKINOKI, J. & KOMURA, Y. (1952). J. Phys. Soc. Jpn, 7, 

30-35. 
KAIONOKI, J. & KOMtJRA, Y. (1954a). J. Phys. Soc. Jpn, 9, 

169-176. 
KAKINOKI, J. & KOMtJRA, Y. (1954b). J. Phys. Soc. Jpn, 9, 

177-183. 
KAKINOKI, J. & KOMURA, Y. (1965). Acta Cryst. 19, 137- 

147. 
PATERSON, M. S. (1952). J. Appl. Phys. 23, 805-811. 
PATTERSON, A. L. & KASPER, J. S. (1967). International 

Tables for X-ray Crystallography, Vol. II, pp. 342-354. 
Birmingham: Kynoch Press. 

TRONC, E. & HtmER, M. (1973). J. Phys. Chem. Solids, 34, 
2045-2058. 

WmGERS, G. A. & JELLrNEK, F. (1970). J. Solid State 
Chem. 1, 519-525. 

WILSON, A. J. C. (1942). Proc. R. Soc. London Ser. A, 180, 
277-285. 

Acta Cryst. (1980). A36, 139-142 

A Simple Method to Correct for Secondary Extinction in 
Polarized-Neutron Diffractometry 

BY R. CHAKRAVARTHY AND L. MADHAV RAO 

Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Bombay 400085, India 

(Received 10 July 1979; accepted 10 September 1979) 

Abstract 

In polarized-neutron diffractometry, one often observes 
a variation of the polarization ratio over the rocking 
curve. This paper outlines a simple method which uses 
this interesting feature to estimate quantitatively the 
secondary-extinction parameter in the specimen 
crystal. 

Introduction 

In polarized-neutron diffractometry, where the aim is to 
obtain magnetic form factors or spin-density distri- 
butions in magnetic crystals, one has to measure with 

0567-7394/80/010139-04501.00 

considerable precision the magnetic structure factor, 
M. In these experiments, M is arranged to interfere 
either constructively or destructively with the nuclear 
structure factor N (see, for example, Nathans & 
Pickart, 1963). Thus, for the two states of incident 
neutron polarization, the peak Bragg intensities are 1 + 

(N + M) 2 and I -  ~ (N - M) 2, respectively. The 
measurement of the ratio of these two peak inten- 
sities, called the polarization ratio R, leads to a deter- 
mination of M / N .  Provided one knows accurately the 
nuclear structure factor, the magnetic structure factor 
can be directly obtained from the measurement of R. 
However, in the presence of extinction, the true polariz- 
ation ratio R 0 will differ from the observed one Rob s as 
follows. Rob s = RoY÷/y -, where y-+ are the extinction 

© 1980 International Union of Crystallography 


